УДК 658.562

И. А. Кострикина, Е. Н. Галкина

МЕТОДИКА ОПРЕДЕЛЕНИЯ МЕЖПОВЕРОЧНЫХ ИНТЕРВАЛОВ ПО РЕЗУЛЬТАТАМ УСКОРЕННЫХ ИСПЫТАНИЙ

I. A. Kostrikina, E. N. Galkina

METHODS OF DETERMINING CALIBRATION INTERVALS BASED ON THE RESULTS OF TESTS OF FORCED

А и и о т а ц и я. Поставлена задача разработки методики определения оптимального межповерочного интервала средств измерений. В результате проведенного анализа доказано, что наиболее корректным и эффективным является метод назначения первичного межповерочного интервала СИ по результатам ускоренных испытаний. Предложена методика назначения межповерочных интервалов по результатам ускоренных испытаний, в которой в качестве критерия нормируемого показателя использовано значение вероятности метрологической исправности компонента в момент поверки.

A b s t r a c t. This article seeks to develop a methodology for determining the optimal recalibration interval of measurement. As a result of analysis, the authors argue that the correct and most effective method is the use of primary recalibration interval SI as a result of the forced trials. The authors proposed a method for use calibration intervals based on the results of the forced trials, which as a criterion of the rated value of the probability measure used metrological serviceability of the component at the time of calibration.

K *л ю ч е в ы е с л о в а*: межповерочный интервал, средства измерения, ускоренные испытания.

K e y w o r d s: calibration interval, measuring instruments, accelerated testing.

Развитие рыночных отношений в России ужесточило требования к качеству продукции, что в свою очередь привело к необходимости увеличения парка средств измерений (СИ). За последние десятилетия количество типов СИ увеличилось многократно.

Одной из основных форм поддержания СИ в метрологически исправном состоянии является его периодическая поверка. Она проводится метрологическими службами согласно правилам, изложенным в специальной нормативно-технической документации. Поверку необходимо проводить через определенные интервалы времени, называемые межповерочными интервалами (МПИ) [1]. При этом возникает проблема, которая заключается в следующем. С одной стороны, для снижения риска эксплуатации метрологически неисправного оборудования и предотвращения аварийных ситуаций поверка должна проводиться как можно чаще. С другой стороны, частые поверки оказываются экономически нецелесообразными и трудозатратными как человеческих, так и аппаратных ресурсов. То есть возникает задача определения оптимального межповерочного интервала.

Установление значения межповерочного интервала СИ в соответствии с рекомендациями [2] не решает проблему: доступных данных, как правило, недостаточно. Кроме того, если с корректировкой межповерочного интервала СИ в процессе эксплуатации вопрос может быть решен на основе анализа данных, полученных периодическими поверками или калибровками,

Измерение. Мониторинг. Управление. Контроль

то для назначения первичного межповерочного интервала СИ вопрос остается открытым, хотя метрологическая надежность закладывается при проектировании и разработке СИ.

Согласно [2] при назначении первичного межповерочного интервала СИ могут быть приняты во внимание:

- результаты испытаний СИ или его отдельных блоков, данные о нестабильности элементов СИ;
 - показатели надежности СИ;
 - данные об опыте эксплуатации СИ-аналогов.

Определение межповерочного интервала СИ по итогам длительных испытаний, вопервых, является дорогостоящей процедурой, а, во-вторых, результат таких испытаний теряет свою ценность при последующих изменениях в технологии производства, например, при замене поставщика компонентов или материалов.

Назначение межповерочного интервала СИ по аналогу вносит неопределенность в связи с возможным отличием в свойствах материалов и компонентов, а также в особенностях принятой технологии и условиях эксплуатации. Возрастающая скорость изменения технологий и материалов усугубляет это обстоятельство.

При изучении вопроса авторами были изучены достоинства и недостатки методов назначения МПИ (табл. 1).

Таблица 1

Методы назначения МПИ

Методы назначения МПИ	Достоинства	Недостатки
1. На основе статистически	Высокая достоверность	Большое количество
скрытых и явных отказов	результатов испытаний	экспериментальных данных
		по процессам изменения во времени;
		исследования весьма трудоемки
2. По экономическому	Минимизация расходов	Применение приближенных
критерию	на эксплуатацию СИ; устранение	моделей
	последствий от возможных	
	ошибок, вызванных	
	погрешностями измерения	
3. Произвольное назначение	Минимальные финансовые	Определение первого МПИ;
первоначального МПИ	и временные затраты	не на все СИ существуют
с последующей		нормативные документы
корректировкой в течение		с рекомендациями первого МПИ;
всего срока службы СИ		отсутствуют данные
		о надежности элементов
4. Назначение МПИ	Отсутствие финансовых	Результат аналогов не всегда
по аналогам	и временных затрат	корректно применять к новому
		разрабатываемому средству
		измерения; у приборов аналогов
		отсутствуют данные о параметрах
		надежности

Как видно из табл. 1, ни один из приведенных методов не дает полной достоверной оценки МПИ.

Наиболее достоверный результат назначения МПИ может быть получен при проведении натурных испытаний в течение сроков наработки до отказа. Однако натурные испытания эффективно проводить при небольших наработках на отказ. Проведение натурных испытаний является очень трудоемким и приводит к затратам финансовых и человеческих ресурсов. В связи с этим целесообразно проводить форсированные испытания, но с возможностью сохранения картины потоков отказов дефектов СИ.

На основании вышеизложенного авторами предложена методика назначения МПИ по результатам ускоренных испытаний.

В данной методике в качестве критерия нормируемого показателя предлагается использовать предел допускаемых значений вероятности метрологической исправности компонента

 $P_{_{\mathrm{MII}}}^{*}$ в момент очередной поверки (либо предел средней доли компонентов, забракованных при поверке, ($\epsilon^{*}=1-P_{_{\mathrm{MII}}}^{*}$)). Рекомендуемые значения $P_{_{\mathrm{MII}}}^{*}=0.90...0.95$ [3, 4].

Применительно к выбранному критерию определения МПИ ($P_{\scriptscriptstyle{\mathrm{MU}}}^*$) алгоритм испытаний заключается в следующем (рис. 1).

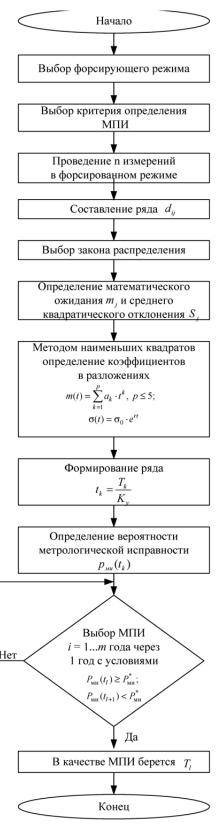


Рис. 1. Алгоритм определения МПИ по результатам ускоренных испытаний

Измерение. Мониторинг. Управление. Контроль

Проводится n измерений характеристик компонентов каждого типа прибора. Составляется ряд d_{ij} , где i – номер образца компонента данного типа; j – номер измерения.

Закон распределения выбирается в процессе анализа опытных данных о наработках аналогичных изделий до отказа. При выборе теоретического закона распределения необходимо учитывать информацию об изменениях, происходящих в объектах перед наступлением отказов, т.е. о характере физических процессов, протекающих в объекте.

Весьма удобной представляется методика определения закона распределения по коэффициентам асимметрии и эксцесса путем проверки гипотез. Задача проверки гипотезы о законах распределения по коэффициентам асимметрии и эксцесса начинается с выбора нулевой гипотезы. По данным эксперимента определяются статистические оценки коэффициента асимметрии $a_{\overline{x}}$ и коэффициента эксцесса $e_{\overline{x}}$. Например, для нормального закона распределения коэффициенты выглядят следующим образом:

$$a_{\overline{x}} = \frac{\mu_3[\overline{x}]}{\sigma_{\overline{x}}^3}$$
; $e_{\overline{x}} = \frac{\mu_4[\overline{x}]}{\sigma_{\overline{x}}^4} - 3$,

где
$$\sigma_{\overline{x}} = \sqrt{\frac{\displaystyle\sum_{i=1}^{n} (x_i - M_x)^2}{n-1}} = \sqrt{\frac{\displaystyle\sum_{i=1}^{n} x_i^2 - \left(\displaystyle\sum_{i=1}^{n} x_i\right)^2}{n-1}}; \ \mu_3 = \frac{1}{n} \sum_{i=1}^{n} (x_i - M_{\overline{x}})^3; \ \mu_4 = \frac{1}{n} \sum_{i=1}^{n} (x_i - M_{\overline{x}})^4.$$

Значения оценок $a_{\overline{x}}$ и $e_{\overline{x}}$ позволяют приближенно определить закон распределения. Для этого по полученным значениям оценок на диаграмму наносится точка ($a_{\overline{x}}$; $e_{\overline{x}}$).

Задача проверки гипотезы о виде распределения происходит по критерию согласия Пирсона χ^2 . Это один из основных критериев, который можно представить как сумму отношений квадратов расхождений между теоретическими (f_T) и эмпирическими (f) частотами к теоретическим частотам:

$$\chi^2 = \sum_{i=1}^k \frac{\left(f_i - f_T\right)^2}{f_T},$$

где k — число групп, на которые разбито эмпирическое распределение; f_i — наблюдаемая частота признака в i-й группе; f_T — теоретическая частота.

Для распределения χ^2 составлены таблицы, где указано критическое значение критерия согласия χ^2 для выбранного уровня значимости α и степеней свободы df. Уровень значимости α – вероятность ошибочного отклонения выдвинутой гипотезы, т.е. вероятность того, что будет отвергнута правильная гипотеза. P – статистическая достоверность принятия верной гипотезы. В статистике чаще всего пользуются тремя уровнями значимости:

- $\alpha = 0.10$, тогда P = 0.90;
- $\alpha = 0.05$, тогда P = 0.95;
- $-\alpha = 0.01$, тогда P = 0.99, может быть отвергнута правильная гипотеза.

Число степеней свободы df определяется как число групп в ряду распределения минус число связей: df = k - z. Под числом связей понимается число показателей эмпирического ряда, использованных при вычислении теоретических частот, т.е. показателей, связывающих эмпирические и теоретические частоты. Например, при выравнивании по кривой нормального распределения имеются три связи. Поэтому при выравнивании по кривой нормального распределения число степеней свободы определяется как df = k - 3. Для оценки существенности расчетное значение сравнивается с табличным $\chi^2_{\text{табл}}$.

При полном совпадении теоретического и эмпирического распределений $\chi^2=0$, в противном случае $\chi^2>0$. Если $\chi^2_{\rm pacq}>\chi^2_{\rm табл}$, то при заданном уровне значимости и числе степеней свободы гипотеза о несущественности (случайности) расхождений отклоняется. В случае, если $\chi^2_{\rm pacq}<\chi^2_{\rm табл}$, то гипотеза принимается, и с вероятностью $P=(1-\alpha)$ можно утверждать,

что расхождение между теоретическими и эмпирическими частотами случайно. Критерий согласия Пирсона используется, если объем совокупности достаточно велик (N > 50). При этом частота каждой группы должна быть не менее 5.

Для каждого номера измерения j определяются математическое ожидание и среднее квадратическое отклонение m_j , S_j , например, для нормального закона распределения

$$m_j = \frac{1}{n} \sum_{i=1}^n \delta_{ij};$$

$$\sigma_j^2 = \frac{1}{n-1} \sum_{i=1}^n (\delta_{ij} - m_j)^2.$$

По полученным значениям $m_j,\, S_j\,$ методом наименьших квадратов находятся коэффициенты в разложениях

$$m(t) = \sum_{k=1}^{p} a_k \cdot t^k, \ p \le 5;$$

$$\sigma(t) = \sigma_0 \cdot e^{rt}$$
.

Формируется ряд

$$t_k = \frac{T_k}{K_{\rm v}},$$

где T_k — значения МПИ из ряда 1, 2, 3 и т.д., через 1 год; $K_{\rm y}$ — коэффициент ускорения для данного компонента.

Вероятность метрологической исправности в момент времени t_k определяется по формуле, например, для нормального закона распределения

$$p_{\text{MH}}(t_k) = \Phi\left(\frac{\delta^* - m(t_k)}{\sigma(t_k)}\right) - \Phi\left(\frac{-\delta^* - m(t_k)}{\sigma(t_k)}\right),$$

где $\Phi(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{\frac{-x^2}{2}} dx$; δ^* – предел допускаемых значений МХ.

Выбирается номер l, такой, что

$$P_{\scriptscriptstyle{\text{MU}}}(t_l) \ge P_{\scriptscriptstyle{\text{MU}}}^*;$$

$$P_{\scriptscriptstyle \mathrm{M}\mathrm{I}}(t_{l+1}) < P_{\scriptscriptstyle \mathrm{M}\mathrm{I}}^*.$$

В качестве МПИ компонента берется T_I .

Данная методика позволит более достоверно определять межповерочные интервалы, повысить эффективность поверочных работ и может применяться при разработке новых типов средств измерений или вводе в эксплуатацию средств измерений, ввезенных по импорту в РФ.

Список литературы

- 1. Сергеев, А. Г. Метрология: учеб. / А. Г. Сергеев. М.: Логос, 2005. 272 с.
- 2. РМГ 74—2004. ГСИ. Методы определения межповерочных и межкалибровочных интервалов средств измерений.
- МИ 2554–99. Государственная система обеспечения единства измерений. Теплосчетчики. Методика испытаний с целью подтверждения межповерочных интервалов. Общие требования.
- 4. Дорохов, А. Н. Обеспечение надежности сложных технических систем: учеб. / А. Н. Дорохов, В. А. Керножицкий, А. Н. Миронов. СПб.: Лань, 2011. 352 с.

Кострикина Инна Анатольевна

кандидат технических наук, начальник лаборатории, Научно-исследовательский институт электронно-механических приборов E-mail: tbmc2@mail.ru

Галкина Екатерина Николаевна

студентка, Пензенский государственный университет E-mail: katu000.92@mail.ru

Kostrikina Inna Anatol'evna

candidate of technical sciences, head of laboratory, Scientific-research Institute of electro-mechanical devices

Galkina Ekaterina Nikolaevna

student, Penza State University

УДК 658.562

Кострикина, И. А.

Методика определения межповерочных интервалов по результатам ускоренных испытаний / И. А. Кострикина, Е. Н. Галкина // Измерение. Мониторинг. Управление. Контроль. – 2013. – N° 3 (5). – С. 19–24.